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INTRODUCTION

Lactobacilli species belonging to the lactic acid bacteria (LAB) display various beneficial effects 
on host wellbeing with their anti-microbial, anti-inflammatory, anti-cancer, anti-diabetic, anti-al-
lergic, and anti-obesity activities1. LAB can prevent and/or improve multiple diseases using differ-
ent modes of action, such as adhesion to the intestinal tract, host immunomodulation, inhibition 
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of pathogenic bacteria, and modulation of microbiota2. Bacteriocins, the main antimicrobial sub-
stances produced LAB, are ribosomally synthesized peptides that inhibit or kill some bacteria, 
generally by membrane pore-forming3. Although the influence of bacteriocins on intestinal patho-
gens is well understood, their specific effects on the gut microbiota remain little known. Recently, 
a few studies4,5 discovered that bacteriocins can modulate microbiota or immunity which is relat-
ed to several health-promoting functions on the host. However, to exert their health-promoting 
claims, sufficient concentrations of viable bacteria have to reach the target niches to interact with 
commensal microbiota6.

Probiotics are exposed to various environmental conditions that decrease their viability 
throughout processing, storage, and utilization. Furthermore, loss of probiotic viability is attribut-
ed to the high acid and bile salt concentrations in the gastrointestinal (GI) tract7. The encapsula-
tion technique has great potential to preserve probiotics. Calcium alginate (Alg), a label-friendly 
ingredient, is one of the most used compounds for protecting and delivering bacteria8-10. To in-
crease bacterial viability in stomach conditions, because of the diffusion of small hydrogen ions 
into the Alg capsules11, they can be coated with whey proteins thereby improving cell viability as 
demonstrated in other studies12,13.

Although the bacteriocins produced by LAB have a narrower antimicrobial spectrum than an-
tibiotics, and are active principally against Gram-positive bacteria, the producer LABs can play 
an important role in the competitive exclusion of some pathogens with slight disturbance to the 
commensal gut microbiota, in contrast to most antibiotics14. They can also directly help the pro-
ducers to survive and establish a niche in the microbial ecosystems, leading to the modulation 
of microbiota15. Various studies16-18 have described the effect of bacteriocin-producing LAB on 
changing gut microbiota in animals and humans. Producer strains could change certain bacterial 
groups but and not the overall gut microbiota structure5. Furthermore, proof-of-concept studies 
based on bacteriocin producer LAB and their respective isogenic mutants point out that, in most 
cases, only producer strains, but not their mutants, were able to modulate some microbiota 
groups5,15,19. Therefore, bacteriocin-producing probiotics can be a next-generation approach for 
a finer/more targeted way of modulating the gut microbiota20.

Pediococcus acidilactici HM-2 isolated from human breast-fed infant faeces was used as a 
bacteriocin-producing strain, in this study. The main objectives of this study were (1) to identify 
the bacteriocin produced by the strain HM-2, (2) to investigate the protective effect of encapsu-
lation on the viability and on the gut transit of the strain, and (3) to explore the modulation of gut 
microbiota comparing the non-encapsulated and the encapsulated P. acidilactici cells in mice. 

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions 

Pediococcus acidilactici HM-2, isolated from human breast-fed infant faeces and identified by 
16S rRNA gene sequencing (GenBank: OR532460.1) was used as a bacteriocin producer strain. 
It was grown in Man, Rogosa and Sharpe (MRS, Difco Laboratories, France) medium at 37ºC 
under aerobic conditions. Listeria monocytogenes ATCC 7644 and Listeria innocua CIP 8011 
were used as indicator microorganisms for evaluating antimicrobial activities and grown in Brain 
Heart Infusion (BHI, Difco Laboratories, France) medium at 37ºC. 

Bacteriocin Purification and Identification

Bacteriocin was purified from the supernatant of the 1L culture of P. acidilactici HM-2 through 
cation exchange chromatography followed by hydrophilic-interaction and reverse-phase chro-
matography (Pharmacia-LKB, Uppsala, Sweden), essentially described by Nissen-Meyer et al21. 
Molecular mass of the purified bacteriocin was determined using Mass spectrometry22. A peptide 
mass similarity search was conducted using the TagIdent tool on the ExPASy database. 

The antimicrobial activity of purified bacteriocin was confirmed by agar well-diffusion assay 
against L. monocytogenes and L. innocua23. The presence of the gene encoding bacteriocin 
production was also identified by PCR analysis. Briefly, the total genomic DNA of the strain was 
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extracted using a commercial kit protocol (Macherey-Nagel, Germany), and PCR was carried 
out using pediocin PA1-specific primers (F:5’AGCAGCTTTCGAGTTTCCCCACT-3’ and R:5’TG-
CCAGGTTTATGAAGATTCTCTGCAC-3’) according to Rodriguez et al24. The PCR product was 
then sequenced using ABI Prism 377 DNA sequencing system (Applied Biosystem, USA) and 
assembled using the BioEdit software, version 7.0.0. A similarity search was conducted with the 
BLAST program from NCBI database (version 2.2.15). 

Encapsulation

Bacterial cell suspensions (1010 CFU/mL) mixed with 1.8% alginic acid sodium salt (Alg) from 
brown algae (Sigma-Aldricht, Cambridge, UK) were placed in a syringe attached to the pump of 
the encapsulation system (NISCO, Switzerland). The mixture was then dropped through a 600 
µm nozzle into the gelifying solution (0.1 M CaCl2). After rinsing with 1.5% peptone water for 30 
min, capsules were coated with a whey protein solution (5% w/v) on an orbital shaker at 100 rpm 
for 30 min. Finally, capsules were freeze-dried and analyzed under a Scanning Electron Micro-
scope (SEM)11,12.

Resistance to Gastrointestinal Tract Conditions

Resistance to simulated gastric and intestinal compartments was assessed as described by 
Lankaputhra and Shah25, and Truelstrup-Hansen et al26. Briefly, non-encapsulated (109 CFU/mL) 
and encapsulated (109 CFU/100mg capsule) bacterial suspensions were incubated sequentially 
in solutions simulating the gastric and intestinal compartments. Then, cell viability was assessed 
using a plate counting assay.

In vivo Experiments

Six-week-old male Swiss albino mice (Janvier, Le Genest-Saint-Isle, France) were quarantined 
one week after arrival. They were housed under a controlled environment and standard labora-
tory conditions with free access to food and water. Mice were then divided into four groups (n=5/
group) and fed with 100 µL water for the control group (C), with non-encapsulated bacteria (NE, 
108 CFU/100 µL), encapsulated bacteria (E, 108 CFU/10 mg) and empty capsules (CC) for 21 
days. Mice were weighed every two days and their behavior and signs of pain were also analyzed 
daily. All animal work and procedures complied with the guidelines set forth by the European 
Economic Community (directive 2010/63/UE). The protocol was approved by both the Animal 
Research Committee of the Agriculture Ministry and the Ethical Committee C2EA50.  

Gastrointestinal Transit and Survival of P. acidilactici HM2 in Mice

At the end of the experimental protocol, the GI passage of the strain was explored. Feces of 
each group were collected before the administration protocol (0 h), every two hours until 16 h, 
and then every 12 h until 72 h post-feeding, aseptically. Suspensions of fecal samples (0.1 g/mL) 
were diluted and then plated onto agar selective media (100 µg novobiocin, 10 mg vancomycin, 1 
mg ampicillin in 1L MRS). All colonies were counted after the incubation period at 37ºC for 48 h. 
Most were randomly picked up for confirmation using a specific PCR based on the pediocin PA-1 
production gene (ped-A gene) (see above). The native strain was used as a control.

Fecal Microbiota Evaluation

After 21 days of probiotic administration, stool samples were collected, and DNA was extracted 
using the Nucleospin Soil Genomic DNA Isolation kit (Macherey-Nagel, Germany) as previously 
described27. For DGGE profiling, the hypervariable V2-V3 region of the bacterial 16S rRNA gene 
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region was amplified using universal bacterial primers (HDA1-GC, HDA-2)28. DGGE was per-
formed with a DCode Mutation Detection System (Bio-Rad, Hercules, CA, USA) according to the 
protocol from Carasi et al29. Clustering analysis was performed using the UPGMA (unweighted 
pair group method with arithmetic mean clustering algorithm) linkage GEL-COMPARE (ApplMath 
Version 4.1). 

For quantitative analysis, specific primers for Firmicutes, Bacteroidetes, Bacteroides fragilis 
group, Prevotella group, Bifidobacterium spp., Lactobacillus spp., Lactobacillus murinus, Lac-
tobacillus acidophilus group, Escherichia coli, Akkermansia muciniphila, and Faecalibacterium 
prausnitzii  were used for PCR reactions which were performed on a CHROMO 4™ System (Bio-
Rad) using SYBR Green/ ROX qPCR Master Mix (Bio-Rad, France)29.

Statistical Analysis

The means of at least three replications for each experiment were analyzed by single factor anal-
ysis of variance. Statistical comparisons for significant differences were performed according to 
GraphPad Prism 6,0 (GraphPad Software, San Diego, CA, USA), using Tukeys’ test. A p-value 
<0.05 was considered statistically significant.

RESULTS

During the purification of the bacteriocin, the fraction that displayed the highest antimicrobial 
activity from the first run on the reverse-phase column was collected and re-chromatographed 
again. The fraction with a single absorbance pick corresponding to the activity (Figure 1A) was 
then used for identification. Mass spectrometry analysis confirmed the mono-isotropic molecular 
mass of the purified bacteriocin to be 4,623 Da (Figure 1B), which was found identical to pediocin 
PA-1 on the ExPASy database. The activity of the purified bacteriocin against L. monocytogenes 
ATCC 7644 and L. innocua CIP 8011 was also confirmed with the inhibition zones as 21±1.8 mm 

Figure 1. A, Second reversed-phase chromatogram. B, Electrospray ionization mass spectrometry analysis of the 
fraction shown in A. C, Inhibition zones of bacteriocin. D, Agarose gel electrophoresis of Pediocin PA-1 PCR pro-
duct. E, Schematic diagram of the encapsulation protocol. F, General SEM images of capsules. G, SEM images of 
cross sections of the spherical capsules.
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and 20±1.2 mm, respectively (Figure 1C). To genetically prove bacteriocin identification, specific 
PCR primers were used to amplify the pediocin PA-1 peptide region. The PCR fragment found, 
approximately 1.025 bp by agarose gel electrophoresis (Figure 1D), was then sequenced. The 
BLAST search on the NCBI database showed that it was 100% identical to the pediocin PA-1 
gene of P. acidilactici strain MTCC 5101 (GenBank: GQ214404.1).

To increase the cell viability, P. acidilactici HM-2 cells were encapsulated using Alg and 
then coated with whey proteins (Figure 1E). The capsules obtained as a uniformly spherical 
and white opaque color were about 0.5-0.6 mm in diameter. SEM images also clearly illus-
trated their shape and wrinkled surface (Figure 1F). When the cross sections of the spherical 
capsules were analyzed under SEM, it was shown that P. acidilactici cells were distributed ran-
domly in the alginate matrix, and whey completely covered the encapsulated cells as a rough 
surface (Figure 1G). 

Following the encapsulation, we investigated the impact of whey protein-coated Alg capsules 
on the viability of cells when exposed to simulated GI system conditions. Initially, no significant 
differences between encapsulated and non-encapsulated groups were observed at pH 7 (Figure 
2A). Furthermore, the number of viable cells in pH 3 was also found to be similar (Figure 2B). 
However, non-encapsulated cells completely lost their viability following the exposure to simulat-
ed gastric fluid pH 2 after three hours, contrary to the encapsulated cells, presenting more than 
7 log10 CFU/mL of viable cells (Figure 2C). No significant differences between encapsulated and 
non-encapsulated groups were observed after exposure to the simulated small intestine phase, 
including different concentrations of bile salt (Figure 2D).  

In addition to the in vitro assays, an in vivo mice model was applied to determine the impact 
of the encapsulation on GI passage of P. acidilactici HM-2. Faecal samples were collected at 
different post-feeding times. Colonies obtained in the selective agar plates were confirmed by 
a specific PCR, based in the pediocin PA1-gene. Ninety-eight percent of the colonies analyzed 
were positive for this PCR. The transit study demonstrates that the HM-2 strain was detected 
after the 6th hour of feeding in the NE and E formulations. The highest amount of the HM-2 
strain in faeces was obtained at 10 h for the two formulations. Then it decreased, and no bacte-
ria were detected at the 48th hour and later time points (Figure 3A). Globally, transit time of the 

Figure 2. Effect of encapsulation on the viability of Pediococcus acidilactici HM-2 cells after simulated gastroin-
testinal digestion. A, pH:7. B, Gastric conditions as pH:3 and C, pH:2. D, Different concentrations of bile salt. 
***Indicates 0.001 < p-value < 0.01.
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free or encapsulated HM-2 strain seemed to be identical. The impact of introducing the bacte-
riocin producer strain on the gut bacterial populations was investigated using DGGE and qPCR 
analysis. DGGE analysis generated two principal clusters, one including the encapsulated and 
non-encapsulated probiotic groups together, with a 96.1% similarity, while the second cluster 
composed of the negative control and empty capsule groups together, with a 96.5% similarity, 
indicating probiotic-dependent composition of the microbiota (Figure 3B).  

The qPCR analysis of the different groups of microbiota tested revealed some modifications. 
The two probiotic formulations (NE and E) significantly increased the Bifidobacterium spp. More-
over, the E form of Pediococcus increased also the Bacteroidetes (B. fragilis group and Prevotel-
la) and L. murinus and L. acidophilus species group (Figure 3C). 

No significant differences were observed in the other bacterial groups tested (Firmicutes, 
Lactobacillus, E. coli, Faecalibacterium prausnitzii, and Akkermansia muciniphila). In addition, 
the empty capsules will not modify the microbial groups tested.

DISCUSSION

An important aspect of a probiotic is that it must remain viable during its use to provide many of its 
health benefits30. Because probiotics can lose viability during gut transit, protection techniques, 
such as encapsulation could be interesting9. In accordance with other authors, the encapsulation 
of P. acidilactici HM-2, using whey-coated Alg capsules, improved its viability at acidic pH, but is 
not significant in the presence of bile salts, even if we observe a trend12,13. Moreover, viable HM-2 
cells were recovered in the faeces of mice after their GI transit, in the two formulations (NE and 
E), with a maximum peak at 10 h, with an average of 8.2 x 108 CFU/g of feces, demonstrating at 
least a good viability during transit. 

Figure 3. A, Gastrointestinal tolerance of Pediococcus acidilactici HM-2 cells after administration to mice. B and 
C represent the effect of strain and encapsulation on fecal microbiota. In B, DGGE profiles and dendrogram of 
different groups of treatment (NE, non-encapsulated; E, encapsulated; C, negative control; CC, control capsule 
not including the viable cells) was shown. In C, qPCR quantification of microbiota members in different groups of 
treatment were given. Data are expressed as mean ± SEM (n =5). On top of each bar, lowercase and capital letters 
indicate significant differences analyzed by two-way ANOVA followed by Tukey’s test (p < 0.05. The asterisk re-
presents the significant difference (p < 0.05) ****Indicates 0.001 < p-value < 0.01; ***Indicates 0.001 < p-value < 0.01; 
**Indicates 0.001 < p-value < 0.01; * 0.01 < p-value < 0.05.
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Selected LAB can be interesting probiotics1 and bacteriocin production is considered as an 
important selection criterion for LAB, however, not all LAB strains harbour bacteriocin genes, 
even within the same species20,31. We demonstrated that the HM-2 strain of P. acidilactici produc-
es the pediocin PA-1, a class IIa bacteriocin, presenting a relatively narrow spectrum of inhibition, 
and presumed to have little effect on the host gut microbiota5,15. However, very few in vivo studies 
have investigated the effects of bacteriocin-producing LAB on the gut microbiota, other than 
studies in which pathogenic bacteria were antagonized4,15,19 and any studies utilized an encap-
sulated strain. Our study, using healthy mice, showed that the administration of the Pediococcus 
HM-2 strain increased the Bifidobacterium, in the non-encapsulated and encapsulated forms of 
administration. Interestingly, Bifidobacterium is well known to exert positive health benefits in the 
host, producing important compounds such as B vitamins and healthy short-chain fatty acids 
(SCFAs)32.

Furthermore, our study showed that the encapsulated HM-2 strain increased two Lacto-
bacillus species, but did overall increase all Lactobacillus, indicating an internal competition/
reorganization of Lactobacillus gender. Besides that, the Bacteroidetes (as B. fragilis group 
and Prevotella) were increased, and even without an increase in Firmicutes, the F/B ratio de-
creased, which appears to be directly related to the form of administration of the probiotic in 
our study. Bacteroidetes significantly decrease in obese mice, and similarly in patients with 
metabolic syndrome and type 2 diabetes33. The encapsulated HM-2 strain could be a good 
alternative because it might contribute to a healthy metabolic balance. Jia et al34 showed an 
increased level of Bifidobacterium and Bacteroides, like us, when mice were treated with the 
bacteriocin nisin; however, nisin can have a much broader spectrum than pediocin. In another 
study using healthy mice and L. acidophilus JCM 1132, despite the narrow antibacterial spec-
trum of the produced bacteriocin, significant differences in the gut microbiota were observed, 
as an increase in Bifidobacterium, and a reduction in the F/B ratio, implicating preferentially 
the increase in the Bacteroidete S24-735. Furthermore, a Pediococcus producer of pediocin 
PA-1 increased the Clostridiaceae in mice, contrary to the non-producer isogenic mutant5. 
In contrast, the isogenic PA-1 producer or non-producer strain decreased the Lactobacillus, 
Streptococcus and Enterococcaceae5. Results differ slightly from ours, but the authors use a 
different and non-encapsulated P. acidilactici strain. Likewise, Qiao et al31 screened bacterio-
cin producer P. acidilactici strains and studied their impact on healthy mice microbiota. They 
observed different variation profiles. One strain increased Bacteroides and decreased Firmic-
utes, but another increased Bifidobacterium and Lactobacillus principally. The two bacteriocins 
presented a spectrum of inhibition close to pediocins, but unfortunately, they have not been 
characterized.

Discrepancies between in vitro and in vivo spectra of bacteriocin producers on the microbiota 
can occur due to bacteriocin production, for example, which can be regulated by signal trans-
duction systems (quorum-sensing)36, as well as feedback through the symbiosis or inhibition of 
other intestinal bacteria. A bifidobacterial effect, concerning both quantity and functionality, was 
shown for other microbiota members37 as the cross-feeding mechanisms between Bifidobacte-
rium and Bacteroides species38,39, which could explain some results using bacteriocin producer 
strains that involved a concomitant increase in both bacteria. Bacteroides spp. appear to be 
critical players in immunomodulation and provide nutrients and vitamin K to the host and other 
intestinal microbial residents40. 

In addition, our results showed that the encapsulation of the probiotic enhanced the effect of 
the HM-2 strain on microbiota. This could be explained because the capsules will open in the 
intestine (at pH 6 to 6.5), releasing probiotic bacteria in its proximity and thus create a punctual 
cell density, contrary to the non-encapsulated strain. Interestingly, bacteriocins can act as sig-
nal peptides, inducing their biosynthesis in a cell density-dependent manner36 and, in addition 
to regulating their synthesis, they can engage in interspecies communication or bacterial cross 
talk20, which will create a snowball effect in microbiota modifications.

CONCLUSIONS

In this study, we characterized the bacteriocin produced by the HM-2 strain as pediocin PA-1, a 
class IIa bacteriocin. Alginate capsules coated with whey proteins enhanced the probiotic strain 
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viability at acidic pH but did not modify its intestinal transit. Moreover, we showed for the first 
time that encapsulation of a bacteriocin producer strain could provoke different effects on gut 
microbiota than the same non-encapsulated strain, probably due to the quorum-sensing and 
bacterial crosstalk effects. Accordingly, bacteriocin production traits and delivery forms should 
be considered in applying LAB probiotics.
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